

The correlated variation of the GRB intensity and the spectral shape

Felix Ryde & Hoi-Fung Yu KTH Stockholm Correlations between spectral parameters during the prompt phase: 9 years of GBM observations

Clue for the physics of the emission mechanism

- Time-resolved spectral analysis
- Individual pulses with > 5 high SNR bins
- Bayesian analysis

Correlations between spectral parameters during the prompt phase: 9 years of GBM observations

Clue for the physics of the emission mechanism

9 years of GBM observations yielded 38 single pulses with 577 spectra

Analysis performed with 3ML (Vianello+15)

Band function and a cutoff power law were used

See David Yu's poster! Yu et al., online soon

All pulses observed by GBM with more than 5 time bins with SNR >20

Results and comparison to the GBM catalogue (Yu et al. 2016)

1. α-distribution

(Yu et al. 2016)

This work

Distribution of α_{max}

$$<\alpha> = -0.802 \pm 0.312$$

$$<\alpha> = -0.79 \pm 0.43$$

2. Cutoff power law the "best" model Consistent with Yu et al. (2016)

68% of pulses have $\alpha_{max} > -0.67$

Ghirlanda+02 found 44%

All pulses observed by GBM with more than 5 time bins with SNR >20

Results and comparison to the GBM catalogue (Yu et al. 2016)

3. β-distribution

 β is softer for the pulses in out sample

Spectral correlations over individual pulses

Crider+97

Ghirlanda+02

Lloyd-Ronning+02

Posterior distribution of fits

$$F(t) = F_0 e^{k \alpha(t)}$$

While E_p - α and E_p -F show a variety of behaviours. The F- α correlation is similar in most bursts

The data points move along a single track in the F- α plane

$$F(t) = F_0 e^{k \alpha(t)}$$
Typical value $k \sim 3$

Qualitative explanation: Emission from the photosphere

Intensity and shape of the spectrum depends on

- the heating Beloborodov13
- photon production efficiency

Dissipation by oblique shocks (Meszaros&Rees05) turbulence (Zrake+18)
B-fields (Giannios+04)

Position of the saturation radius

Thermal pressure dominates

$$E_K << E_{rad}$$

- 1. Luminous
- 2. Thermal spectra (Small dissipation compared to E_{rad})

Ahlgren+15

Rees & Meszaros05; Pe'er+06; Giannios06, 08; loka+07;

Beloborodov10; Lazzati+11; Vurm+13, Vianello+17

Summary photospheric scenario

Acceleration phase:

- narrow spectra
- bright emission

Coasting phase:

- broader spectra
- weaker emission

Variation in $\frac{r_{\rm ph}}{r_{\rm s}}$

$$\frac{r_{\rm ph}}{r_{\rm s}} = \frac{L\sigma_{\rm T}}{4\pi m_{\rm p}c^3\eta^2\Gamma^2r_0} \propto \frac{L}{r_0} \eta^{-4}$$

Spectral correlations over individual pulses

Conclusions:

- Time resolved pulses in GBM:
- 67% have $\alpha_{\rm max} > -0.67$ $F-\alpha$ common correlation

• Subphotospheric emission, with dissipation and a varying entropy.

$$\eta = L/\dot{M}c^2$$
 Intense, narrow spectra weak, broad spectra

Physical models should be used in spectral analyses
 e.g., Baring+95, Ghirlanda+02, Ahlgren+15, Vianello+18, Burgess+18